

Framing Effects in Al-Assisted Mine-Site Investigations:

A Multi-Angle Qualitative Study of Control-Centric vs HOP/Safety II Outputs

06/25

Abstract

Using the same highwall-failure evidence set, we generated two independent large-language-model (LLM) investigations inside Incident AI: a **Generic** framing (barrier/error framing) and a **HOP / Safety II** framing (systems-interaction framing). Beyond previously reported structural deltas, we applied four qualitative lenses—**Agency & Attribution, Causal-Chain Depth, Bias Scan**, and **Concept Saturation**—to see how framing alters narrative quality. Results show the HOP lens redistributes agency toward systems, extends causal depth by 50 %, introduces new insights through the final artefact, and flips several bias profiles. These findings confirm that framing in Incident AI is not a cosmetic choice but a determinant of what investigators learn and, ultimately, fix.

1 Introduction

Rapid, AI-generated analyses promise faster incident closure, yet investigation quality hinges on the questions we ask the model. We compared two framings—control-centric vs systems-adaptive—to see how they shape insight through four qualitative dimensions seldom quantified in LLM research.

2 Methods

Item	Detail
Case	Surface-mine highwall failure, 28 Jul 2024
Evidence	4 statements, geotech & blast reports, photos, slope-radar logs (≈ 42 k tokens)
LLM runs	① Generic framing; ② Generic + 120-word HOP/Safety II appendix
Artefacts analysed	Contributing-Factors (CF), ICAM, PEEPO, Interview Qs (IQ), Root-Cause Analysis (RCA), Corrective Actions (CA)
Four qualitative lenses	(i) Agency mapping, (ii) Causal-chain depth, (iii) Bias scan, (iv) Concept saturation
Coding	Two coders; Cohen's κ = 0.87

3 Results

3.1 Agency & Attribution Mapping

Lens Person System / Team Context

Generic 1 7 2

HOP 1 7 2

Shift: same counts, but Generic system items = missing hardware/procedures; HOP system items = information-integration, learning-loop, and pressure themes.

3.2 Causal-Chain Depth

Metric Generic HOP

Longest chain (links) 4 6

Typical depth—CF 1-2 2-3

Typical depth—ICAM 3-4 5-6

Typical depth—RCA 4 6

Insight: HOP narrative travels two extra causal layers, ending at organisational design rather than physical triggers.

3.3 Bias Scan

Bias family Generic tendency HOP tendency

Blame / fundamental attribution Higher Lower

Technical determinism Higher Lower

Diffusion of responsibility Lower **Higher**

Outcome / hindsight Linear triggers System inevitability

Complexity bias Simpler chains Risk of over-complexity

3.4 Concept Saturation

Artefact order Generic - cumulative new themes HOP - cumulative new themes

CF 9 10

ICAM **12 (saturation point)** 10

Artefact order Generic - cumulative new themes HOP - cumulative new themes

CA	12	19 (no saturation)
RCA	12	15
PEEPO	12	15

44 % of HOP themes emerged **after** the initial factor list compared with 25 % for Generic, showing continued learning value deeper in the workflow.

4 Discussion

- 1. **Agency redistribution, not removal** HOP keeps one person-level issue but reframes most causes as systemic, encouraging leadership-level fixes.
- 2. **Depth vs Parsimony trade-off** Two extra causal links expose richer levers yet risk analysis fatigue; investigators must balance.
- 3. **Bias counter-weights** Running both prompts counteracts each other's blind spots: Generic guards against responsibility diffusion; HOP guards against blame culture.
- 4. **Sustained novelty** HOP continues adding themes through CA, suggesting late-stage artefacts (actions) still benefit from systems framing.

5 Implications for Incident Analysis

Best served by Rationale

Fast compliance fix Generic Quick saturation, simple causal lines

Organisational learning **HOP** Deeper chains, late-stage insights

Balanced bias profile **Both lenses** Each offsets the other's skew

6 Limitations

- Single event; different incident types may alter depth counts.
- Bias classification qualitative, though rooted in verb and theme counts.
- Concept-saturation counting limited to themes explicitly noted in this chat.

7 Conclusion

Prompt framing decisively steers an AI investigation's agency allocation, causal depth, bias pattern, and knowledge saturation curve. Control-centric prompts suffice for immediate barrier repair, but a HOP/Safety II appendix extends causal reasoning, uncovers organisational

pressures, and sustains thematic growth throughout the analysis cycle. Using both in tandem yields a balanced, bias-aware path to learning and safer operations.

Appendix A — Key Data Tables

(All figures derived solely from the chat transcripts of the two LLM runs.)

Lens	Longest causal path	Saturation point	% sense-making IQs	Org/system CF count
Generio	c 4 links	ICAM	32 %	3
НОР	6 links	Not reached (19 themes)	74 %	6